Applying Theories of Particle Packing and Rheology to Concrete for Sustainable Development

نویسندگان

  • Ka Wai Chan
  • Vivian Wong
  • Albert Kwok Hung Kwan
چکیده

844 Concrete is one of the most important construction materials. However, it is not so compatible with the demands of sustainable development because manufacturing of cement generates a large amount of carbon dioxide and therefore cement consumption produces a huge carbon footprint. Currently, the cement consumption is generally lowered by adding supplementary cementitious materials to replace part of the cement. Nonetheless, in order to maintain performance, there is a limit to such cement replacement by supplementary cementitious materials. To further reduce the cement consumption, the total cementitious materials content has to be reduced. This requires the packing density of the aggregate particles to be maximized so that the amount of voids in the bulk volume of aggregate to be filled with cement paste could be minimized and the surface area of the aggregate particles to be minimized so that the amount of cement paste needed to form paste films coating the surfaces of aggregate particle for rheological performance could be minimized. Such optimization is not straightforward and modern concrete science based on particuology is needed. Herein, a number of new theories regarding particle packing and rheology of concrete, which are transforming conventional concrete technology into modern concrete science, are presented. These theories would help to develop a more scientific and systematic concrete mix design method for the production of high-performance concrete with minimum cement consumption. Applying Theories of Particle Packing and Rheology to Concrete for Sustainable Development

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Packing Theory for Natural and Crushed Aggregate to Obtain the Best Mix of Aggregate: Research and Development

Concrete performance is strongly affected by the particle packing degree since it determines the distribution of the cementitious component and the interaction of mineral particles. By using packing theory designers will be able to select optimal aggregate materials for preparing concrete with low cement content, which is beneficial from the point of cost. Optimum particle packing implies minim...

متن کامل

Mix proportioning of high-performance concrete by applying the GA and PSO

High performance concrete is designed to meets special requirements such as high strength, high flowability, and high durability in large scale concrete construction. To obtain such performance many trial mixes are required to find desired combination of materials and there is no conventional way to achieve proper mix proportioning. Genetic algorithm is a global optimization technique based ...

متن کامل

توسعه مدل شبکه -دانه مجزای بتن برای سنگدانه‌های غیردایروی

In this paper, Lattice-Discrete Particle Model (LDPM) of concrete has been extended in 2-D to account for the effect of non-circular aggregates. To this end, the flexible equation of super-ellipse is employed for generating aggregates in order to add the simulation possibility of a greater spectrum of aggregate samples in 2-D to lattice-Discrete particle Model. Alongside this extention, require...

متن کامل

Applying Solid Residues of Copper Slag in Kerman Sarcheshme of Iran as Sand Replacement for Self-Compacting Concrete

The reuse of mineral wastes is one of the most suitable solid wastes solutions. Throughout the world, the large of the granular aggregates used in constructions exploit natural mountain resources and rivers. Using mineral waste as a part of concrete, it can be helped to create a green environment and also contribute to sustainable development. Since the copper production process in the Sarchesh...

متن کامل

Early Age Shrinkage Behavior of Triple Blend Concrete

The early age shrinkage is responsible for the early age cracking of concrete. It is very critical for durability of concrete. The change in volume of concrete due to evaporation of water or dehydration process is known as shrinkage. To reduce the early age shrinkage utilized the supplementary cementitious material (SCM) in concrete. In present research industrial and agricultural waste byprodu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013